Part Number Hot Search : 
SC2738 128VLK 080CT ALS64 ATM10 12F60 IRFZ4 MOC205
Product Description
Full Text Search
 

To Download IRL1404 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
   hexfet ? power mosfet seventh generation hexfet ? power mosfets from international rectifier utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. this benefit, combined with the fast switching speed and ruggedized device design that hexfet power mosfets are well known for, provides the designer with an extremely efficient and reliable device for use in a wide variety of applications. the to-220 package is universally preferred for all commercial-industrial applications at power dissipation levels to approximately 50 watts. the low thermal resistance and low package cost of the to-220 contribute to its wide acceptance throughout the industry. s d g parameter max. units i d @ t c = 25c continuous drain current, v gs @ 10v 160  i d @ t c = 100c continuous drain current, v gs @ 10v 110  a i dm pulsed drain current   640 p d @t c = 25c power dissipation 200 w linear derating factor 1.3 w/c v gs gate-to-source voltage 20 v e as single pulse avalanche energy  620 mj i ar avalanche current  95 a e ar repetitive avalanche energy  20 mj dv/dt peak diode recovery dv/dt  5.0 v/ns t j operating junction and -55 to + 175 t stg storage temperature range soldering temperature, for 10 seconds 300 (1.6mm from case) c mounting torque, 6-32 or m3 srew 10 lbfin (1.1nm) absolute maximum ratings thermal resistance v dss = 40v r ds(on) = 4.0m ? i d = 160a   advanced process technology  ultra low on-resistance  dynamic dv/dt rating  175c operating temperature  fast switching  fully avalanche rated description  www.irf.com 1 parameter typ. max. units r jc junction-to-case ??? 0.75 r cs case-to-sink, flat, greased surface 0.50 ??? c/w r ja junction-to-ambient (pcb mounted)  ??? 62 to-220ab 

 2 www.irf.com parameter min. typ. max. units conditions v (br)dss drain-to-source breakdown voltage 40 ??? ??? v v gs = 0v, i d = 250a ? v (br)dss / ? t j breakdown voltage temp. coefficient ??? 0.038 ??? v/c reference to 25c, i d = 1ma ??? ??? 4.0 v gs = 10v, i d = 95a  ??? ??? 5.9 v gs = 4.3v, i d = 40a  v gs(th) gate threshold voltage 1.0 ??? 3.0 v v ds = v gs , i d = 250a g fs forward transconductance 93 ??? ??? s v ds = 25v, i d = 95a ??? ??? 20 a v ds = 40v, v gs = 0v ??? ??? 250 v ds = 32v, v gs = 0v, t j = 150c gate-to-source forward leakage ??? ??? 200 v gs = 20v gate-to-source reverse leakage ??? ??? -200 na v gs = -20v q g total gate charge ??? ??? 140 i d = 95a q gs gate-to-source charge ??? ??? 48 nc v ds = 32v q gd gate-to-drain ("miller") charge ??? ??? 60 v gs = 5.0v, see fig. 6  t d(on) turn-on delay time ??? 18 ??? v dd = 20v t r rise time ??? 270 ??? i d = 95a t d(off) turn-off delay time ??? 38 ??? r g = 2.5 ? v gs = 4.5v t f fall time ??? 37 ??? r d = 0.25 ?  between lead, ??? ??? 6mm (0.25in.) from package and center of die contact c iss input capacitance ??? 6590 ??? v gs = 0v c oss output capacitance ??? 1710 ??? pf v ds = 25v c rss reverse transfer capacitance ??? 350 ??? ? = 1.0mhz, see fig. 5 c oss output capacitance ??? 6650 ??? v gs = 0v, v ds = 1.0v, ? = 1.0mhz c oss output capacitance ??? 1510 ??? v gs = 0v, v ds = 32v, ? = 1.0mhz c oss eff. effective output capacitance  ??? 1480 ??? v gs = 0v, v ds = 0v to 32v nh electrical characteristics @ t j = 25c (unless otherwise specified) l d internal drain inductance l s internal source inductance ??? ??? s d g i gss ns 4.5 7.5 i dss drain-to-source leakage current s d g parameter min. typ. max. units conditions i s continuous source current mosfet symbol (body diode) ??? ??? showing the i sm pulsed source current integral reverse (body diode)  ??? ??? p-n junction diode. v sd diode forward voltage ??? ??? 1.3 v t j = 25c, i s = 95a, v gs = 0v  t rr reverse recovery time ??? 63 94 ns t j = 25c, i f = 95a q rr reverse recoverycharge ??? 170 250 nc di/dt = 100a/s   t on forward turn-on time intrinsic turn-on time is negligible (turn-on is dominated by l s +l d ) source-drain ratings and characteristics 160  640    repetitive rating; pulse width limited by max. junction temperature. ( see fig. 11).   starting t j = 25c, l = 0.35mh r g = 25 ? , i as = 95a. (see figure 12).  i sd 95a, di/dt 160a/s, v dd v (br)dss , t j 175c.  pulse width 300s; duty cycle 2%.   c oss eff. is a fixed capacitance that gives the same charging time as c oss while v ds is rising from 0 to 80% v dss.  calculated continuous current based on maximum allowable junction temperature; for recommended current-handing of the package refer to design tip # 93-4.  calculated continuous current based on maximum allowable junction temperature. package limitation current is 75a. m ? r ds(on) static drain-to-source on-resistance
 www.irf.com 3 fig 4. normalized on-resistance vs. temperature fig 2. typical output characteristics fig 1. typical output characteristics fig 3. typical transfer characteristics -60 -40 -20 0 20 40 60 80 100 120 140 160 180 0.0 0.5 1.0 1.5 2.0 2.5 t , junction temperature ( c) r , drain-to-source on resistance (normalized) j ds(on) v = i = gs d 10v 160a 10 100 1000 0.1 1 10 100 20s pulse width t = 25 c j top bottom vgs 15v 10v 8.0v 7.0v 6.0v 5.5v 5.0v 4.3v v , drain-to-source voltage (v) i , drain-to-source current (a) ds d 4.3v 10 100 1000 0.1 1 10 100 20s pulse width t = 175 c j top bottom vgs 15v 10v 8.0v 7.0v 6.0v 5.5v 5.0v 4.3v v , drain-to-source voltage (v) i , drain-to-source current (a) ds d 4.3v 100 1000 4.0 5.0 6.0 7.0 8.0 v = 15v 20s pulse width ds v , gate-to-source voltage (v) i , drain-to-source current (a) gs d t = 25 c j t = 175 c j
 4 www.irf.com fig 8. maximum safe operating area fig 6. typical gate charge vs. gate-to-source voltage fig 5. typical capacitance vs. drain-to-source voltage fig 7. typical source-drain diode forward voltage 1 10 100 0 2000 4000 6000 8000 10000 v , drain-to-source voltage (v) c, capacitance (pf) ds v c c c = = = = 0v, c c c f = 1mhz + c + c c shorted gs iss gs gd , ds rss gd oss ds gd c iss c oss c rss 0 100 200 300 400 500 0 4 8 12 16 20 q , total gate charge (nc) v , gate-to-source voltage (v) g gs for test circuit see figure i = d 13 95a v = 20v ds v = 32v ds 1 10 100 1000 0.0 0.5 1.0 1.5 2.0 2.5 3.0 v ,source-to-drain voltage (v) i , reverse drain current (a) sd sd v = 0 v gs t = 25 c j t = 175 c j 10 100 1000 10000 1 10 100 operation in this area limited by r ds(on) single pulse t t = 175 c = 25 c j c v , drain-to-source voltage (v) i , drain current (a) i , drain current (a) ds d 10us 100us 1ms 10ms
 www.irf.com 5 fig 11. maximum effective transient thermal impedance, junction-to-case fig 9. maximum drain current vs. case temperature v ds 90% 10% v gs t d(on) t r t d(off) t f   
 1     0.1 %      


 + -   25 50 75 100 125 150 175 0 40 80 120 160 t , case temperature ( c) i , drain current (a) c d limited by package 0.001 0.01 0.1 1 0.00001 0.0001 0.001 0.01 0.1 1 notes: 1. duty factor d = t / t 2. peak t = p x z + t 1 2 j dm thjc c p t t dm 1 2 t , rectangular pulse duration (sec) thermal response (z ) 1 thjc 0.01 0.02 0.05 0.10 0.20 d = 0.50 single pulse (thermal response)
 6 www.irf.com q g q gs q gd v g charge d.u.t. v ds i d i g 3ma v gs .3 f 50k ? .2 f 12v current regulator same type as d.u.t. current sampling resistors + -  fig 13b. gate charge test circuit fig 13a. basic gate charge waveform fig 12c. maximum avalanche energy vs. drain current fig 12b. unclamped inductive waveforms fig 12a. unclamped inductive test circuit t p v (br)dss i as r g i as 0.01 ? t p d.u.t l v ds + - v dd driver a 15v 20v 25 50 75 100 125 150 175 0 300 600 900 1200 1500 starting t , junction temperature ( c) e , single pulse avalanche energy (mj) j as i d top bottom 49a 101a 121a
 www.irf.com 7  
       p.w. period di/dt diode recovery dv/dt ripple 5% body diode forward drop re-applied voltage reverse recovery current body diode forward current v gs =10v v dd i sd driver gate drive d.u.t. i sd waveform d.u.t. v ds waveform inductor curent d = p. w . period + - + + + - - -        ?   ?      ?


      
 !"!  ? "#$  ? %&  ? "#"'( !  )*    &)

)&!+        ,-
)"(".     for n-channel  hexfet ? power mosfets
 8 www.irf.com data and specifications subject to change without notice. this product has been designed and qualified for the automotive [q101] market. qualification standards can be found on ir?s web site. ir world headquarters: 233 kansas st., el segundo, california 90245, usa tel: (310) 252-7105 tac fax: (310) 252-7903 visit us at www.irf.com for sales contact information . 07/02 lead assignments 1 - gate 2 - drain 3 - source 4 - drain - b - 1.32 (.052) 1.22 (.048) 3x 0.55 (.022) 0.46 (.018) 2.92 (.115) 2.64 (.104) 4.69 (.185) 4.20 (.165) 3x 0.93 (.037) 0.69 (.027) 4.06 (.160) 3.55 (.140) 1.15 (.045) min 6.47 (.255) 6.10 (.240) 3.78 (.149) 3.54 (.139) - a - 10.54 (.415) 10.29 (.405) 2.87 (.113) 2.62 (.103) 15.24 (.600) 14.84 (.584) 14.09 (.555) 13.47 (.530) 3x 1.40 (.055) 1.15 (.045) 2.54 (.100) 2x 0.36 (.014) m b a m 4 1 2 3 notes: 1 dimensioning & tolerancing per ansi y14.5m, 1982. 3 outline conforms to jedec outline to-220ab. 2 controlling dimension : inch 4 heatsink & lead measurements do n ot include burrs. 
   package outline to-220ab dimensions are shown in millimeters (inches) part number international rectifier logo example : this is an irf1010 with assembly lot code 9b1m assembly lot code date code (yyww) yy = year ww = week 9246 irf1010 9b 1m a


▲Up To Search▲   

 
Price & Availability of IRL1404

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X